Recommender Systems

نویسنده

  • Paul Resnick
چکیده

Recommender systems assist and augment this natural social process. In a typical recommender system people provide recommendations as inputs, which the system then aggregates and directs to appropriate recipients. In some cases the primary transformation is in the aggregation; in others the system’s value lies in its ability to make good matches between the recommenders and those seeking recommendations. The developers of the first recommender system, Tapestry [1], coined the phrase “collaborative filtering” and several others have adopted it. We prefer the more general term “recommender system” for two reasons. First, recommenders may not explictly collaborate with recipients, who may be unknown to each other. Second, recommendations may suggest particularly interesting items, in addition to indicating those that should be filtered out. This special section includes descriptions of five recommender systems. A sixth article analyzes incentives for provision of recommendations. Figure 1 places the systems in a technical design space defined by five dimensions. First, the contents of an evaluation can be anything from a single bit (recommended or not) to unstructured textual annotations. Second, recommendations may be entered explicitly, but several systems gather implicit evaluations: GroupLens monitors users’ reading times; PHOAKS mines Usenet articles for mentions of URLs; and Siteseer mines personal bookmark lists. Third, recommendations may be anonymous, tagged with the source’s identity, or tagged with a pseudonym. The fourth dimension, and one of the richest areas for exploration, is how to aggregate evaluations. GroupLens, PHOAKS, and Siteseer employ variants on weighted voting. Fab takes that one step further to combine evaluations with content analysis. ReferralWeb combines suggested links between people to form longer referral chains. Finally, the (perhaps aggregated) evaluations may be used in several ways: negative recommendations may be filtered out, the items may be sorted according to numeric evaluations, or evaluations may accompany items in a display. Figures 2 and 3 identify dimensions of the domain space: The kinds of items being recommended and the people among whom evaluations are shared. Consider, first, the domain of items. The sheer volume is an important variable: Detailed textual reviews of restaurants or movies may be practical, but applying the same approach to thousands of daily Netnews messages would not. Ephemeral media such as netnews (most news servers throw away articles after one or two weeks) place a premium on gathering and distributing evaluations quickly, while evaluations for 19th century books can be gathered at a more leisurely pace. The last dimension describes the cost structure of choices people make about the items. Is it very costly to miss IT IS OFTEN NECESSARY TO MAKE CHOICES WITHOUT SUFFICIENT personal experience of the alternatives. In everyday life, we rely on

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Context-Aware Recommender Systems: A Review of the Structure Research

 Recommender systems are a branch of retrieval systems and information matching, which through identifying the interests and requires of the user, help the users achieve the desired information or service through a massive selection of choices. In recent years, the recommender systems apply describing information in the terms of the user, such as location, time, and task, in order to produce re...

متن کامل

Improving Accuracy of Recommender Systems using Social Network Information and Longitudinal Data

The rapid development of technology, the Internet, and the development of electronic commerce have led to the emergence of recommender systems. These systems will assist the users in finding and selecting their desired items. The accuracy of the advice in recommender systems is one of the main challenges of these systems. Regarding the fuzzy systems capabilities in determining the borders of us...

متن کامل

Evaluation of recommender systems: A multi-criteria decision making approach

The evaluation and selection of recommender systems is a difficult decision making process. This difficulty is partially due to the large diversity of published evaluation criteria in addition to lack of standardized methods of evaluation. As such, a systematic methodology is needed that explicitly considers multiple, possibly conflicting metrics and assists decision makers to evaluate and find...

متن کامل

Increasing the Accuracy of Recommender Systems Using the Combination of K-Means and Differential Evolution Algorithms

Recommender systems are the systems that try to make recommendations to each user based on performance, personal tastes, user behaviors, and the context that match their personal preferences and help them in the decision-making process. One of the most important subjects regarding these systems is to increase the system accuracy which means how much the recommendations are close to the user int...

متن کامل

A New WordNet Enriched Content-Collaborative Recommender System

The recommender systems are models that are to predict the potential interests of users among a number of items. These systems are widespread and they have many applications in real-world. These systems are generally based on one of two structural types: collaborative filtering and content filtering. There are some systems which are based on both of them. These systems are named hybrid recommen...

متن کامل

An Effective Algorithm in a Recommender System Based on a Combination of Imperialist Competitive and Firey Algorithms

With the rapid expansion of the information on the Internet, recommender systems play an important role in terms of trade and research. Recommender systems try to guess the user's way of thinking, using the in-formation of user's behavior or similar users and their views, to discover and then propose a product which is the most appropriate and closest product of user's interest. In the past dec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997